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Abstract 

THE EFFECTS OF bFGF TREATMENT IN THE AGED BRAIN FOLLOWING 

TRAUMATIC BRAIN INJURY 

By Michael R. Zeigler, Master of Science 

A thesis submitted in partial fulfillment of the requirements for the degree of  

Master of Science at Virginia Commonwealth University 

Virginia Commonwealth University, 2010 

Major Director: Dong Sun, MD, PhD., Associate Professor, Department of Neurosurgery 

The mature mammalian brain continually generates new neurons in the subventricular 

zone and hippocampus throughout life.  Adult neurogenesis in the hippocampus is associated 

with hippocampal-dependent learning and memory function.  During aging, this endogenous 

neurogenic potential is reduced which is accompanied by decreased cognitive function seen in 

the aging population.  We have previously found that the injured adult brain shows heightened 

levels of endogenous neurogenesis and this response is associated with innate cognitive 

recovery.  We have also found that basic fibroblast growth factor (bFGF), a potent neurotrophic 

polypeptide, can enhance injury-induced hippocampal neurogenesis and improve cognitive 

recovery following TBI.  In this study, we administered bFGF into the lateral ventricle of aged 

rats following TBI and assessed the effect of bFGF treatment on hippocampal neurogenesis and 
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cognitive recovery in aged animals.  Specifically, male Fisher-344 rats at the age of 20 months 

received intraventricular infusion of bFGF for 7 days through osmotic mini-pump immediately 

following a moderate lateral fluid percussion injury.  To label cell proliferation, animals received 

daily single i.p. BrdU injections for 6 days beginning 48 hr after injury.  One group of animals 

was perfused at 1 wk after injury to assess cell proliferation.  Another group of animals was first 

assessed for cognitive performance using the Morris water maze (MWM) at 21-25 days post-

injury, then sacrificed at 4 weeks after injury to examine differentiation of newly generated cells. 

Brain sections were sliced and immunostained for BrdU, early neuronal marker doublecortin 

(DCX) and other cell type specific markers.  Results showed that at 1 week post-injury, injured-

aged animals infused with either vehicle or bFGF had a significantly higher number of cell 

proliferation in the dentate gyrus compared to sham animals.  However, cell proliferation in the 

bFGF-infused animals was not significantly higher than vehicle-treated animals.  Nevertheless, 

the number of DCX-labeled early stage neurons was significantly higher in the injured bFGF-

treated animals than in vehicle-treated sham and injured animals.  In MWM tests, unlike what we 

have observed in bFGF-treated younger animals, injured aged rats treated with bFGF did not 

show improved cognitive function.  Furthermore, at 4 weeks post-injury, higher numbers of 

BrdU-labeled proliferative cells persisted in both injured groups, many of these cells labeled with 

glial and inflammatory cell markers.  Collectively, the current data suggests that bFGF can 

enhance neurogenesis in the injured-aged hippocampus; however, this effect is not sufficient to 

improve functional recovery of aged rats following TBI due to the profound injury-induced 

inflammatory response.
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Chapter 1 - Introduction and Background 

 

Traumatic brain injury (TBI) is a major healthcare concern in the United States and 

around the world.  As millions of Americans sustain a TBI each year, TBI is one of the leading 

causes of death and long-term disability in the U.S.  One of the hallmarks of TBI-related 

disability is loss of cognitive function.  The central nervous system (CNS) is especially 

vulnerable to injury due to its limited ability to repair or replenish neurons that have been 

damaged or lost.  The cognitive deficits seen in TBI patients have been shown to result in large 

part from the loss of hippocampal neurons, and much research has been done to elucidate the 

biological mechanisms underlying these cognitive impairments in the hopes of developing an 

effective treatment.  The presence of neural progenitor cells in the adult mammalian CNS 

suggests that the CNS retains a level of regenerative capacity throughout life.  These cells persist 

in two regions of the CNS, including the subventricular zone (SVZ), which lines the lateral 

ventricles, and the dentate gyrus (DG) of the hippocampus.  Although heightened during 

development, the ability of these neural stem/progenitor cells (NS/NPCs) to proliferate and 

differentiate into neurons and glia continues throughout adulthood.  Additionally, research has 

shown that TBI significantly increases the proliferation of NS/NPC’s (Sun et al., 2005; 

Chirumamilla et al., 2002).  More specifically, the level of TBI-induced cell proliferation in the 

neurogenic regions is higher in the younger brain and decreases with age, which correlates with 

clinical findings that juvenile patients show greater cognitive improvement than older patients 
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following TBI (Kuhn, 1996; Eiben et al., 1984).  Furthermore, the number of newly generated 

cells that assume a neuronal maturational fate decreases with age, which suggests a link between 

neurogenesis and cognitive recovery (Sun et al., 2005; Sun et al., 2007).  This crucial link is 

indicative of an endogenous repair mechanism within the brain.  Studies examining the 

underlying biological basis of this innate repair mechanism have found elevated levels of growth 

factor expression following TBI (Mattson and Scheff, 1994; Oyesiku et al. 1999).  One of these 

growth factors, basic fibroblast growth factor (bFGF), has been shown to stimulate the 

proliferation of NS/NPC’s in vitro and in vivo (Shetty et al., 2005; Vicario-Abejon, 2004 ; Ray et 

al., 1993 ; Caday et al., 1990).  These findings strongly suggest that bFGF plays a role in 

mediating the TBI-induced proliferative response.  Additionally, a recent study in our lab has 

succeeded in using bFGF treatment to enhance cell proliferation and neurogenesis and improve 

cognitive recovery following TBI in adult rats (Sun et al., 2009), and an association between 

integration of newly generated hippocampal neurons into existing neuronal circuitry and 

cognitive recovery has also been established (Sun et al., 2005).  These studies collectively 

demonstrated that bFGF treatment improves cognitive recovery in adult rats following TBI.  

Taken together, we postulate that if the robust TBI-induced cell proliferation observed in 

juveniles could be mimicked in their older counterparts by treatment with bFGF, this could 

potentially enhance neurogenesis and aid the elderly to achieve significant improvements in 

cognitive recovery.  More specifically, it was hypothesized for this thesis that bFGF treatment 

following TBI would significantly improve cognitive recovery in aged rats.  To test this 

hypothesis, this study set out to assess the effects of bFGF treatment on hippocampal 

neurogenesis in the aged brain and on cognitive recovery following TBI.  In order to determine 

the degree of cell proliferation and the survival of these cells, proliferating cells were labeled 
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with BrdU from days 2-7 post-injury.  BrdU-positive cells were quantified using stereological 

methods in the DG at 7 and 28 days post-injury in injured vehicle-treated and bFGF-treated 

animals as well as sham animals.  In order to assess the effect of bFGF treatment on 

neurogenesis in the aged animals, young neurons were labeled with DCX and quantified using 

stereological methods at 7 days post-injury.  To assess the maturational fate of cells generated 

following TBI, sections from animals sacrificed at 4 weeks post-injury were processed for 

immunofluorescent double-labeling of BrdU with cell-type specific markers for mature neurons 

(NeuN), astrocytes (GFAP), and infiltrating macrophages and microglia (ED1), and were 

examined using confocal microscopy.  To assess the effect of bFGF on cognitive recovery of 

aged rats following injury, a novel object recognition test was performed on 3, 7, 14, and 28 days 

post-injury, and the Morris water maze was performed on post-injury days 21-25 with a probe 

trial 24 hrs later.   

As the purpose of this study was to evaluate bFGF as a potential treatment in the aged 

animal following TBI, this thesis will first focus on the epidemiology and pathology of TBI, 

followed by a brief review of cell proliferation and neurogenesis in the aged brain and the effects 

of bFGF treatment on these processes. 

Epidemiology and pathology of TBI 

 Traumatic brain injury continues to be a serious global health concern and is one of the 

leading causes of disability and death in the United States (Langlois et al., 2006).  Each year 

approximately 1.5 million Americans suffer from TBI, with the most common causes involving 

violence or assault, motor vehicle accidents, falls, or sports-related injury (Langlois et al., 2006; 

Thurman et al., 1999).  Of these known cases of TBI, 1.1 million are treated in Emergency 
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Departments, 235,000 require hospitalization, and 50,000 result in death.  An additional 200,000 

TBI patients are treated in outpatient care settings, such as primary care offices, and many more 

are unaccounted for, which include those who are treated in domestic and overseas U.S. military 

installations, those not seeking medical care, and those who are misdiagnosed (Langlois et al., 

2006).  Those at the highest risk for TBI include people from ages 15-24 years and those above 

the age of 64 years, with males showing an incidence rate 2 times higher than females and a 

mortality rate 3.3 times higher (Thurman et al., 1999).  According to the CDC and the U.S. Dept. 

of Health and Human Services, advances in critical care have resulted in fewer fatalities and a 

greater chance of survival for those that have sustained severe TBI.  However, 80,000-90,000 

Americans experience the onset of long-term debilitating loss of function resulting from TBI 

annually, which has contributed to the growing population of those living with TBI-related 

disability in the U.S., which is currently estimated to be 5.3 million, or about 2% of the U.S. 

population (CDC, 1999).  The cost of medical care, rehabilitation, and loss of productivity 

incurred by TBI is estimated to be an astounding $60 billion every year, which represents a 

significant financial burden on the U.S. economy, affected victims, and their families (Langlois 

et al., 2006; Thurman et al., 1999).  Even more burdensome for TBI patients and their loved ones 

is the often lifelong struggle they face to regain cognitive and physical functioning.   

 The pathology associated with TBI is widely described as a biphasic process involving a 

primary insult which is mechanical in nature and a secondary insult consisting of damaging 

physiological effects which can last from a few hours to a few weeks following injury (Dutton 

and McCunn, 2003; Davis, 2000).  Primary brain insult may be focal, resulting from a direct 

blow or penetrating force to the head, or diffuse, resulting from rotational motion of the head.  

More commonly, TBI manifests as a combination of both focal and diffuse injury, causing direct 
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tissue damage, more global diffuse axonal injury, and, ultimately, a variety of neurobehavioral, 

motor, and cognitive deficits depending upon severity and location (Davis, 2000).  The more 

delayed secondary insult which follows is characterized by excitotoxicity, changes in cerebral 

blood flow, local and systemic inflammation, alterations in oxygen delivery and metabolism, and 

both ischemic and apoptotic death of cells in the CNS.  The inflammatory response to injury is 

beneficial in that it is necessary for healing and repair; however, the reaction is exaggerated and 

is harmful to many cells in the CNS (Dutton and McCunn, 2003). 

The hippocampus is exceptionally vulnerable to secondary insult and has been linked to 

learning and memory deficits, which are the hallmarks of brain injury.  The excitotoxic cascades 

which are a part of secondary insult result in the damage or loss of many neurons in the CA1 and 

CA3 subfields of the hippocampus to a greater extent than surrounding structures in the brain 

(Smith et al., 1991).  The cumulative loss of neurons in the hippocampus along with alterations 

in the excitability and synaptic connections of remaining hippocampal neurons leads to the 

variety of cognitive deficits seen in TBI patients (Witgen et al., 2005).  TBI-related disabilities 

range from cognitive impairments resulting from mild to moderate brain injury to a persistent 

vegetative state resulting from severe brain injury (McArthur et al., 2004; Hilton, 1994).  The 

growing number of TBI-related disabilities in the U.S. is having an ever-increasing impact on the 

economy and on society in general.  Many persons who have sustained a TBI cannot return to 

work for a considerable amount of time and often are unable to work indefinitely (van der Naalt 

et al., 1999).  In addition to affecting TBI patients’ ability to work, cognitive deficits may also 

limit their ability to interact socially, which further prevents them from becoming productive 

members of society and drastically affects their quality of life (Thurman et al., 1999; Hilton, 

1994). 
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Hippocampal-dependent learning and memory deficits are consistently the most enduring 

and devastating effects of TBI; however, most TBI patients demonstrate a slow but significant 

improvement in cognitive function which may take weeks or even months to achieve (McArthur 

et al., 2004; Schmidt et al., 1999).  Although spontaneous cognitive recovery occurs following 

TBI, age-related differences exist in the extent to which this recovery is seen.  Clinical studies 

have shown that younger TBI patients display a greater degree of cognitive improvement and 

recovery of functional independence in comparison to their older counterparts (Eiben et al., 

1984).  In TBI patients, old age has been associated with significantly poorer cognitive 

performance immediately following TBI and poorer long-term cognitive and functional 

outcomes after maximum spontaneous recovery (Senathi-Raja et al., 2010).  In order to explore 

these age-related differences in functional recovery and to more fully understand the pathology 

of TBI, experimental animal models have been developed and utilized in the research of TBI 

with the ultimate goal of developing an effective treatment for this debilitating condition. 

Experimental TBI 

The most widely used in vivo TBI models are CCI (Controlled Cortical Impact) and FPI 

(Fluid Percussion Injury), which have been effective in producing the TBI-induced pathological 

sequelae and subsequent cognitive deficits seen clinically (Kline et al., 2002; Hamm et al., 1996; 

Gorman et al., 1993).  In particular, L-FPI (Lateral Fluid Percussion Injury) produces a 

combination of focal and diffuse injury and consistently induces TBI-related cognitive 

dysfunction, which has led to L-FPI being used extensively as a valid reproducible model of TBI 

to investigate the pathology of TBI and evaluate potential treatment paradigms designed to 

improve functional outcome following TBI (Thompson et al., 2005).  Many studies have 

employed L-FPI in rats to characterize age-related differences in functional outcome after brain 
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insult.  Similar to what is seen clinically, rats experience an increase in neurological deficits and 

mortality rate with age following TBI (Hamm et al., 1991).  It has also been shown that juvenile 

rats significantly outperformed their aged counterparts on hippocampal-dependent learning and 

memory functions as assessed by the Morris water maze test on days 11-15 following L-FPI 

(Hamm et al., 1996).   

Although a great deal of research has been devoted to investigating the neurobiological 

basis of cognitive recovery from brain trauma, the molecular mechanisms underlying these 

observed age-related differences in functional outcome following TBI have not been fully 

elucidated.  However, the spontaneous cognitive recovery that is seen in humans and animals 

following TBI, limited as it may be, suggests that the CNS has an inherent potential to regenerate 

and repair itself following TBI.  One potential mechanism of this endogenous repair response in 

the CNS is thought to involve the proliferation of neural progenitor cells located in specific 

germinal zones of the brain and their subsequent differentiation into neurons and glia.  A 

thorough look at these neural progenitor cells and their role in repair and cognition is necessary.  

Neurogenesis in the mature CNS 

 The scientific community had long held that no new neurons could be generated in the 

CNS.  However, as early as 1965, investigators demonstrated that the SVZ (subventricular zone), 

adjacent to the ependymal layer of the lateral ventricles, and the DG (dentate gyrus) of the 

hippocampus continuously generate new cells throughout life in the mature mammalian brain, 

and that these cells have the capacity to differentiate into neurons or glia (Altman and Das, 1965; 

Lois and Alvarez-Buylla, 1993).  Reserves of multipotent neural stem/progenitor cells 

(NS/NPCs) are localized at the SVZ and DG, and endogenous cell proliferation in the mature 
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mammalian CNS is limited to these regions (Peterson, 2002).  The SVZ contains the largest 

population of dividing NPC’s, the progeny of which migrate into the olfactory bulb (Peterson, 

2002; Temple and Alvarez-Buylla, 1999).  In the DG of the mature mammalian brain, NPC’s are 

generated in the subgranular zone (SGZ), which is at the border between the hilus and granule 

cell layer (Kuhn et al., 1996).  These NS/NPCs and their daughter cells migrate laterally to the 

granule cell layer where they become mature functioning granular neurons (Parent, 2003).  

Ordinarily, a large percentage of these newly generated granule cells undergo apoptosis 

(Cameron and McKay, 2001).  However, the majority of newly generated cells that persist in the 

DG for an extended period of time become mature granule neurons (Sun et al., 2007).  Those 

new granule cells which survive extend their axonal projections to their appropriate targets in the 

CA3 subfield of the hippocampus and integrate into the existing neuronal circuitry as mature, 

functional granule neurons (Hastings and Gould, 1999; Markakis and Gage, 1999).  Furthermore, 

studies have confirmed that these new neurons display passive membrane properties, generate 

action potentials, and form functional synaptic inputs, which are characteristics of mature dentate 

granule neurons (van Praag et al., 2002).   

Hippocampal neurogenesis is enhanced following TBI 

Although more robust in younger animals, the adult mammalian CNS maintains certain 

degree of NS/NPC proliferation and neurogenesis throughout life, and these processes are 

significantly enhanced in response to TBI (Sun et al., 2005; Gould and Gross, 2002; Temple and 

Alvarez-Buylla, 1999).  As these post-TBI changes are closely correlated to spontaneous 

cognitive recovery, recent studies have attempted to shed more light on the mechanisms of this 

endogenous repair response.   
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Injury to the brain is accompanied by a robust cell proliferative response in the SVZ, DG, 

and at the site of injury, which suggests that the CNS retains an innate regenerative and 

reparative capacity which may account for cognitive recovery observed following TBI  

(Chirumamilla et al., 2002).  As an illustration, enhanced proliferation of granule cell precursors 

in the SGZ of the DG can be directly stimulated by the death of mature hippocampal granule 

neurons (Gould and Tanapat, 1997).  A previous study in our lab has shown that TBI generated a 

nearly threefold increase in cell proliferation in the SGZ in juvenile and adult rats as compared to 

uninjured age-matched sham controls, with TBI-induced cell proliferation reaching a peak at 2 

days post-injury before tapering off and returning to basal levels by 14 days post-injury (Fig. 1.1; 

Sun et al., 2005).  Our lab later demonstrated that out of this large pool of newly generated cells, 

many new cells persist in the DG for an extended period of time (Fig. 1.2; Sun et al., 2007). 

There is evidence that these newly generated cells are involved in the endogenous repair 

response and subsequent cognitive recovery.  The loss of these injury-induced proliferating cells, 

which can be caused experimentally by irradiation, resulted in significantly diminished cognitive 

recovery in adult rats following TBI as assessed by MWM testing (Tada et al., 2000).  This 

suggests a role for these new cells in neurogenesis and cognitive recovery following TBI. 

The function of hippocampal neurogenesis 

The function of adult neurogenesis is not fully understood.  However, substantial 

evidences have shown a correlation between hippocampal neurogenesis and hippocampal-

dependent learning and memory.  It has been shown that physical activity stimulates a notable 

increase in neuronal generation with subsequent enhancements in spatial learning and long-term 

potentiation (van Praag et al., 1999).  In contrast, diminished hippocampal neurogenesis, which 

can be replicated by administration of an anti-mitotic drug or irradiation, has been associated 
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with poor performance on trace eyeblink classical conditioning which is a hippocampus-

dependent task (Shors et al., 2004).  Also, mouse strains with genetically low levels of 

endogenous neurogenesis have been observed to perform poorly on hippocampal-dependent 

learning tasks when compared to those with a higher level of baseline neurogenesis 

(Kempermann et al., 1997; Kempermann et al., 1998).  Moreover, through studies examining 

hippocampal neurogenesis in various strains of inbred mice and evaluation with MWM testing, 

adult neurogenesis has been found to be involved in specific aspects of hippocampal function, 

such as the acquisition of new information (Kempermann and Gage, 2002).  Collectively, these 

studies show compelling evidence supporting the role of hippocampal neurogenesis in cognitive 

function.  

Although the connection between cognitive function and neurogenesis in the adult 

hippocampus is apparent, the underlying mechanisms contributing to innate recovery following 

brain injury are largely unknown.  Previous studies revealing the association of hippocampal 

neurogenesis to normal cognitive function in the uninjured brain have led to speculation that 

neurogenesis may contribute to cognitive recovery following TBI.  As previously outlined, there 

is a marked increase in cell proliferation in the DG of the hippocampus seen following TBI 

(Chirumamilla et al, 2002; Sun et al., 2005; Dash et al. 2001).  The majority of TBI-induced 

newly generated cells in the adult DG that survive for an extended period of time assume a 

neuronal fate (Sun et al., 2007), and some of these surviving neurons have been reported to 

extend axonal projections to the target CA3 region as early as 14 days post-TBI (Emery et al., 

2005).  Furthermore, the integration of these new cells into the existing hippocampal circuitry 

has been demonstrated to coincide with the time course of cognitive recovery as assessed by 

MWM (Fig. 1.5; Sun et al., 2006; Sun et al., 2007).  Despite the ability of the mature CNS to  
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Figure 1.1: Cell proliferation in the ipsilateral dentate gyrus in juvenile and adult rats 

following TBI.  Coronal sections taken from injured juvenile (a) and adult (b) rats 2 days post-

injury showing an elevated level of cell proliferation as labeled with BrdU in the DG of injured 

juvenile and adult rats.  Arrows indicated BrdU-positive cells are clustered and concentrated in 

the subgranular zone (SGZ) of the DG. (c) Quantification of BrdU-positive cells in the SGZ. 

Graph shows that cell proliferation was significantly enhanced in injured juvenile and adult rats 

at both 2 and 7 days post injury as compared to age-matched sham controls (* p<0.05, ** 

p<0.01). The total number of proliferating cells in injured juveniles was significantly higher than 

injured adult rats at 2 days post injury (*p<0.05, n = 4/group). (d) Nissl stained sections cross the 

hippocampal dentate gyrus with red box showing the corresponding area in (a) and (b) (Sun et 

al., 2005).  In addition, our lab has demonstrated that new granule neurons generated following 

TBI can establish the correct anatomical connections to the CA3 region (Fig. 1.3).  To further 

illustrate that these new neurons integrate into the existing neuronal circuitry, using synaptic 

vesicle marker synaptophysin we have shown that newly generated granule neurons form 

synapses with existing hippocampal neurons (Fig. 1.4; Sun et al., 2007).   
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Figure 1.2: The number of BrdU-positive cells in the ipsilateral dentate gyrus in adult rats 

at 5 days and 10 weeks post-injury.  Moderate lateral fluid percussion injury induced a 4-fold 

increase in the number of BrdU+ cells in the ipsilateral GCL as compared to sham animals at 5 

days post-injury (* p<0.05).  The total number of BrdU+ cells decreased in both injured and 

sham animals over time.  At 10 weeks post-injury, the overall number of BrdU+ cells remained 

3-fold higher in injured animals compared to sham animals (* p<0.01)(Sun et al., 2007).   
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Figure 1.3: Newly generated neurons project axons to the CA3 region of the hippocampus.  

a) Coronal section through the hippocampus of an injured adult rat which had received a 

fluorogold injection in the CA3 region at 8 weeks post-TBI with arrow indicating the injection 

epicenter.  b) Confocal micrograph of the boxed area in panel (a) showing colocalization of 

BrdU (green) and FG (red), confirming that this newly generated cell had projected its axon to 

the CA3 region.  Scale bars: (a): 250 µm; (b): 20 µm. (Sun et al., 2007). 
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Figure 1.4: Newly generated granule neurons are retrogradely labeled with FG (fluorogold) 

and express synaptophysin.  Confocal micrograph thoughout the z-axis showing a newly 

generated BrdU+ cell (green) that is retrogradely incorporated with FG (red) after 10 weeks.  

This same BrdU+ cell is surrounded by a latticework of synaptophysin staining (blue).  Scale 

bar: 30 µm. (Sun et al., 2007). 
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replenish lost or damaged neurons throughout life, this regenerative capacity has been shown to 

decrease with age (Kuhn et al., 1996), which has led to increased investigation into the 

underlying causes of these age-related differences. 

TBI and the aging brain 

 It has long been accepted that juvenile mammals recover to a greater extent than adults 

following brain trauma.  Past clinical studies have found that children exhibit greater cognitive 

recovery and are less dependent on assistance than young adults following brain injury (Eiben et 

al., 1984).  Experimental studies have shown that 3 month old injured rats performed 

significantly better than their 20 month old counterparts on hippocampal-dependent memory 

tasks such as the Morris water maze, which correlates with age-related differences in cognitive 

recovery seen in a clinical setting (Fig. 1.6; Hamm et al., 1992).  The underlying biological basis 

for these age-related differences in functional recovery is not fully understood.  However, a 

decrease has been observed in the proliferative and neurogenic capacity of the mammalian CNS 

with age, which may contribute to the significantly limited cognitive recovery seen in older TBI 

patients (Kuhn et al., 1996).  Past studies in our lab have demonstrated that the juvenile brain is 

capable of generating a much more robust level of cell proliferation in response to TBI than the 

adult brain (Fig. 1.7; Sun et al., 2005).  In addition to the more pronounced proliferative response 

seen in the juvenile brain, a greater percentage of newly generated cells differentiate into neurons 

in juveniles following brain insult as compared to injured adults (Sun et al., 2005).  Another 

study pointed out a correlation between decreased survival of newly proliferated cells and a 

decline in learning and memory function (Wati et al., 2006).  Overall, it is likely that the 

significantly enhanced levels of cell proliferation and neurogenesis seen in the juvenile brain 

contribute to its increased level of recovery above that of aged animals following TBI.  Not only 
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has decreased hippocampal neurogenesis in the aged brain been associated with memory and 

learning deficits, but also has been tied to degenerative structural changes that occur naturally 

with aging (Driscoll et al., 2006).  There is a progressive decline in CNS structure and function 

with age which is characterized by decreased plasticity, decreased cortical volume, decreased 

synaptic density, white matter degeneration, and glial cell reactivity, along with many other 

metabolic and micro-environmental changes; however, the hippocampus experiences relatively 

few structural changes as the brain ages and retains the capacity to generate new, functional 

neurons throughout life (Brazel and Rao, 2004).  The observed decrease in neurogenesis with age 

has been shown in mice to be caused in some measure by a substantial loss of neural precursor 

cells in the SVZ, as well as a reduction in expression of important transcription factors and 

neurogenic factors (Ahlenius et al., 2009; Rao et al., 2006).  Other studies have shown 

exacerbated oxidative damage, diminished antioxidant capacity, and a significantly increased 

loss of tissue in aged rats compared to young adult rats following TBI (Shao et al., 2006).  

Additionally, there is an exacerbated inflammatory response involving the prolonged activation 

of microglia and astrocytes in the aged hippocampus following TBI, which may contribute to the 

poorer cognitive outcomes seen in the elderly (Sandhir et al., 2008).  As a whole, these changes 

may contribute to an overall impaired ability to respond to the various pathological sequelae and 

recover from functional deficits induced by brain insult.   

 The senescent CNS still retains the capacity for neurogenesis and plasticity, albeit not to 

the level seen in the juvenile brain.  However, the aging brain presents an area of research which 

has the potential to benefit an ever-growing and increasingly disadvantaged population, and 

many studies hold some therapeutic promise.  Although there is a steady decrease in endogenous 

neurogenesis with age, this happens primarily through a decrease in new cell generation without 
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any observable changes in the proportion of cells assuming a neuronal fate or survival of certain 

cell types (Olariu et al., 2007).  In a rat model, the observed decrease in neurogenesis with age 

has been attributed in part to a decrease in available neural precursor cells, and a level of 

neurogenesis similar to that of a younger adult can be restored in the aged brain by addition of 

neural precursor cells to the dentate gyrus (Olariu et al., 2007).  It has also been observed that 

some level of neurogenesis can be restored in the aged brain by removing glucocorticoids, which 

have been shown to inhibit neurogenesis in the dentate gyrus (Gould et al., 1992; Olariu et al., 

2007; Kempermann et al., 1998).  Experience-induced neurogenesis has been demonstrated in 

the aging mouse dentate gyrus which was stimulated through an enriched environment 

(Kempermann et al., 1998).  Exercise-induced hippocampal neurogenesis has also been 

displayed in the aged mouse and was associated with a significant reduction in some of the 

negative morphological and behavioral consequences of aging (van Praag et al., 2005).  While 

the age-related differences seen in neurogenesis and functional outcome following TBI are not 

fully understood, and no effective cure has been developed, it is widely suspected that there is an 

underlying neurogenic basis for these differences which is mediated by growth factor expression 

(Sun et al., 2001).   

There is evidence that growth factors may be involved in regulating various activities of 

neural precursor cells, particularly proliferation and differentiation (Kelly et al., 2005).  The aged 

brain retains the capacity to respond to exogenous growth factors, as increased neurogenesis was 

exhibited in the hippocampus and the SVZ in 20 month old mice in response to bFGF (Jin et al., 

2003).  Administration of exogenous bFGF in aged rats resulted in improved functional 

outcomes and increased neurogenesis following middle cerebral artery occlusion (MCAO) (Won 

et al., 2006).  When removed from their normal environment, neural precursor cells from adult 
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and aged SVZ respond similarly when challenged with growth factors in vitro, indicating a 

similar capacity for proliferation and differentiation (Ahlenius et al., 2009).  We speculate that 

the TBI-enhanced proliferative response and subsequent differentiation of newly generated cells 

is mediated by endogenously expressed growth factors in the CNS.  Therefore, it is thought that 

differences in growth factor expression may account for the observed age-related differences in 

cognitive recovery following TBI.  A clearer understanding of the post-TBI micro-environment 

that most effectively promotes neurogenesis will allow this phenomenon to be exploited for 

therapeutic benefit in the aging brain. 

bFGF as a potential treatment for TBI 

 In both the injured and uninjured brain, a number of observations have linked 

endogenous growth factor expression levels to cell proliferation and neuronal differentiation.  

For instance, previous in vivo studies have shown that expression of a number of growth factors 

is significantly elevated during development, which is a period of time during which the 

establishment of the numbers and types of cells is taking place (Caday et al., 1990; Lazar and 

Blum, 1992).  Growth factors are produced by both neurons and non-neuronal cell types during 

brain development, and evidence suggests that they are responsible for the proliferation and 

differentiation of the various cell types in the CNS (Caday et al., 1990; Plata-Salaman, 1991).  It 

has also been shown that various growth factors which are known to stimulate neurogenesis 

experience a significant decline in expression with increased age as compared to developmental 

expression levels (Cintra et al., 1994; Shetty et al., 2005), which corresponds well with the 

decrease in hippocampal neurogenesis seen during the natural aging process and suggests a 

causal relationship (Seki and Arai, 1995; Kuhn et al., 1996).  Expression levels of mitogenic 

growth factors bFGF and EGF are significantly increased in the adult brain following TBI, and 
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Figure 1.5: Cognitive deficits following TBI recover over time.  Graph comparing Morris 

water maze performance of injured rats to sham animals during trials at days 11-15, 26-30, or 

days 56-60 following injury.  Injured animals displayed significant cognitive deficits, as 

characterized by longer latency, at 11-15 days post-injury when compared to sham animals 

(*p<0.05).  These deficits persisted at 26-30 days (*p<0.05).  At days 56-60, injured animals 

showed cognitive recovery with a shorter latency which was not significantly different to sham 

animals.  (Sun et al., 2007). 
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Figure 1.6: Younger animals exhibit a significantly greater degree of cognitive recovery 

following TBI than aged animals as assessed by the Morris water maze.  Graph showing the 

mean (±SEM) of the latency of injured and sham-injured 3-month-old and 20-month-old rats to 

find the goal platform on days 11-15 after injury.  Brain injury produced a deficit in performance 

in both age groups (p < 0.0001).  However, injury resulted in a more severe impairment of 

function in the aged animals (p< 0.05).  (Hamm et al., 1992). 
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Figure 1.7: Cellular proliferation after TBI decreases with age.  a) Coronal section of the of 

the DG in injured juvenile, adult, and aged rats stained for BrdU showing the decreased level of 

TBI-induced cell proliferation with age. b) Graph showing the decrease in total number of 

BrdU+ cells in the ipsilateral DG found with age (*p<0.01, n = 4/group). This graph represents a 

direct comparison of the injury-induced cell proliferative response between juvenile, adult, and 

aged rats, after subtracting out the number of proliferating cells in uninjured sham rats of the 

corresponding age groups. (unpublished data). 
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 this elevated growth factor expression closely parallels the increase in cell proliferation seen 

following injury (Mattson and Scheff, 1994; Oyesiku et al. 1999).  Taken together, these findings 

suggest a growth factor-mediated proliferative response to TBI.   

 Among these growth factors, bFGF has shown promise as a potential treatment for TBI 

related deficits.  Fibroblast growth factors (FGF), namely aFGF and bFGF, are heparin-binding 

polypeptide signaling molecules that have an important role in nervous system development and 

maintenance and are also involved in angiogenesis and wound repair (Burgess and Maciag, 

1989).  FGFs elicit a broad spectrum of cellular responses by interacting with the polysaccharide 

portion of heparin sulfate proteoglycans (HSPG), a component of the extracellular matrix, and 

FGF receptors (FGFR1-5), which are receptor tyrosine kinases; FGFR activation induces 

tyrosine phosphorylation and recruitment of SHP2 which promotes sustained activation of the 

Ras to ERK pathway and leads to changes in gene transcription (Goldfarb, 2001).  FGFs are 

present in high levels in the brain and have been shown in vitro to take action on various CNS 

and PNS cell types (Eckenstein et al., 1991).  Moreover, studies have shown that bFGF is a 

potent mitogenic factor for neural precursor cells both in vitro and in vivo.  Cultured 

hippocampal neural progenitor cells divide in response to bFGF in vitro (Ray et al., 1993; 

Vicario-Abejon, 2004).  In vivo studies have demonstrated that bFGF expression levels are 

elevated during CNS development and diminish with maturity (Shetty et al., 2005; Caday et al., 

1990).  This decrease in bFGF expression is effectively reversed following various forms of 

brain injury (Kumon et al., 1993; Logan et al, 1992).  Additionally, both subcutaneous and 

intraventricular deliveries of bFGF to normal adult animals enhance endogenous neural 

progenitor cell proliferation in the DG and the SVZ (Kuhn et al., 1997; Wagner et al., 1999).  

Furthermore, the injury-induced proliferative response is eliminated in bFGF null mice, but can 
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be restored by administration of exogenous bFGF (Yoshimura et al., 2001).  Collectively, these 

studies implicate bFGF as an important regulatory factor in neurogenesis and brain repair.   

Recent studies in our lab have explored the therapeutic potential of bFGF for brain repair 

in the rat FPI model.  Consequently, exogenous administration of bFGF for 1 week post-injury 

was found to significantly enhance the TBI induced proliferative response in the SVZ and DG of 

adult rats (Fig. 1.8; Sun et al., 2009).  In addition, post-TBI infusion of bFGF was also found to 

enhance endogenous neurogenesis above what is seen in untreated injured animals (Sun et al., 

2009).  Administration of bFGF immediately after injury not only enhanced TBI-induced cell 

proliferation and neurogenesis, but also attenuated the cognitive deficits associated with TBI in 

the adult brain as measured by MWM testing on days 21-25 post- injury (Fig. 1.9).  Injured rats 

infused with bFGF displayed significant cognitive recovery as compared to their injured 

untreated counterparts (Sun et al., 2009).  Having successfully demonstrated that intraventricular 

infusion of bFGF following injury has profound beneficial effects on the endogenous repair 

response and functional recovery in the adult rat brain, this study set out to use similar measures 

to determine if similar improvement in functional outcome can be achieved in the aged rat brain.  

We hypothesized that post-TBI treatment with bFGF can enhance hippocampal neurogenesis and 

improve cognitive recovery of injured aged animals.  In this study, we will deliver bFGF through 

intraventricular infusion for 7 days.  Hippocampal neurogenesis will be assessed with BrdU and 

neuronal markers.  Cognitive function will be examined with novel object recognition and 

Morris water maze tests.   
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Figure 1.8: Intraventricular infusion of bFGF enhances cell proliferation in the DG.  

Coronal sections of the ipsilateral DG were taken from the following animals at 7 days post-

injury: a) sham with vehicle infusion; b) injured with vehicle infusion; and c) injured with bFGF 

infusion.  Increased numbers of BrdU+ cells were observed in the injured animals with either 

vehicle or bFGF infusions compared to the sham (BrdU+ cell clusters indicated by arrows).  

BrdU+ cells in the DG were clustered and mainly located in the SGZ.  Scale bar: 200 µm.  d) 

Quantification analysis of the degree of cell proliferation in the DG.  Compared to shams, injured 

animals with vehicle or bFGF infusion had significantly more proliferating cells in the ipsilateral 

granular zone (*p<0.05) and the contralateral side (+p<0.05).  Injured animals which received 

bFGF had a significantly higher number of BrdU+ cells in the ipsilateral granular zone compared 

to injured animals to injured animals with vehicle (#p<0.05).  e) Quantification analysis of the 

degree of cell proliferation in the hilus region.  Compared to sham animals, proliferation cells in 

both the ipsi- and contralateral hilus were significantly higher in the injured animals with either 

vehicle or bFGF (*/+p<0.05).  (Sun et al., 2009). 
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Figure: 1.9: Post-TBI infusion of bFGF improves cognitive recovery as assessed by Morris 

water maze testing.  Graph compared MWM performance of injured rats infused with either 

bFGF or vehicle, to sham animals infused with vehicle alone.  Injured rats infused with bFGF 

showed a significant improvement of cognitive recovery as compared to injured rats with vehicle 

(*p<0.01, n = 10 in each group).  This cognitive recovery, as characterized by shorter goal 

latency in the water maze performance, reached similar levels to that observed in sham animals 

through days 22-25 following injury.  (Sun et al., 2009). 
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Chapter 2 - Materials and Methods 

 

Subjects 

All protocols and animals used for this study followed NIH guidelines and were approved 

by the Institutional Animal Care and Use Committee at Virginia Commonwealth University.  A 

total of 47 male Fischer 344 rats (NIA, NIH) aged at 20 months weighing approximately 450g 

were used.  These animals were housed in individual cages with food and water available ad 

libitum.  The room where these animals were stored was maintained at a temperature of 20-22 

degrees Celsius with a 12 hour light/dark cycle.  Of the 47 rats employed for this study, 28 were 

used for data analysis. 

Surgical preparation and procedure 

 Animals were subjected to a moderate lateral fluid percussive injury (L-FPI) following a 

standard protocol.  All surgical tools were sterile and aseptic surgical procedures were carried 

out throughout the surgical processes.  Each rat was anesthetized in a Plexiglas chamber with 5% 

isoflurane, intubated, and ventilated with 2.5% isoflurane in a gas mixture (30% O2, 70% N2).  

The top of the rat’s head was shaved, and the rat was secured in a stereotaxic frame.  The shaved 

region was cleansed and scrubbed with Betadine, and Puralube ointment was applied to the eyes.  

An incision was made sagitally along the midline to expose the skull, and the connective tissue 

and fascia were retracted using hemostats.  A 4.9 mm craniotomy was made on the left parietal 
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bone half way between the lambda and bregma sutures using a trephine and a Dremel drill fitted 

with a small dental drill bit (Fig. 2.1).  The resulting bone chip was removed, and a Luer lock 

fitting, or hub, was cemented to the skull with cyanoacrylic.  After the integrity of the seal 

between the hub and the skull was confirmed, dental acrylic was applied liberally around the hub 

and allowed to dry.  In preparation for injury, the male end of a spacing tube was then inserted 

into the hub and filled with 0.9% saline without introducing any air bubbles. 

Lateral fluid percussion injury (L-FPI) 

The injury model chosen for this study was L-FPI because it has been shown to 

reproduce similar pathophysiological effects observed in the clinic following TBI (McIntosh et 

al., 1989).  When surgical preparation was complete, isoflurane anesthesia was switched off.  

Once the rat regained consciousness showing toe and tail reflexes, the intubation tube was 

disconnected, the rat was removed from the stereotaxtic frame and connected to the pre-

calibrated fluid percussion injury device through the Luer-Lock and the fitting tube, and a 

moderate fluid impulse (1.8±1 atm) was administered (Fig. 2.2).  Immediately after the injury, 

the spacer/hub assembly was removed from the rat’s skull, and the rat was reconnected to 

ventilation and allowed to recover without isoflurane.  During the recovery period, paw reflex, 

tail reflex, and righting times were recorded as a method of assessing injury severity.  The 

righting time is defined as the amount of time that lapses from the point of injury until the rat 

returns spontaneously to an upright position from being placed in a supine position.  Injured rats 

were also checked for spontaneous respiration.  Ventilation was continued until an appropriate 

breathing response was regained.  Isoflurane anesthesia at 2.5% was resumed in preparation for 

the placement of an infusion pump into the ventricle once the rat demonstrated a righting reflex.  

Sham animals were subjected to the same surgical procedure without any injury. 
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Figure 2.1: Craniotomy and injury site.  A 4.9 mm craniotomy was made on the left parietal 

bone half way between the lambda and bregma sutures which served as the site where fluid 

percussion injury was delivered.
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Figure 2.2: A photograph of a fluid percussion injury device. 
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Intracerebroventricular infusion 

Thirty minutes after receiving the injury, when the rat was fully re-anesthetized, an Alzet 

brain infusion cannula connected to an Alzet brain mini-osmotic pump was stereotactically 

implanted into the posterior lateral ventricle ipsilateral to the injury site.  The coordinates used 

for cannula placement were -0.8 mm along the anteroposterior axis and 1.4 mm laterally at a 

depth of 3.5 mm beneath the pial surface.  Before the surgical incision was sutured, the mini-

osmotic pump was placed subcutaneously on the back of the neck.  A total of 10 rats receiving 

an injury were infused with recombinant human bFGF reconstituted in sterile artificial CSF (148 

mM NaCl, 3 mM KCl, 1.4 mM CaCl2, 0.8 mM MgCl2, 1.5 mM Na2HPO4, 0.2 mM NaH2PO4, pH 

7.4) containing 100 µg/ml bovine serum albumin and 10 µg/ml heparin for a final concentration 

of 33 µg/ml.  A total of 10 rats receiving an injury and a total of 10 sham uninjured rats were 

infused with the vehicle solution.  Solutions were delivered for 7 consecutive days at a flow rate 

of 0.5 µl/hr (approximately 400 ng/day for bFGF).  After successful placement of the cannula 

and mini-osmotic pump, the surgical incision was closed using a sterile stainless steel suture 

needle and 5-0 polyamide surgical suture in a simple continuous pattern.  After closure of the 

incision, triple antibiotic ointment and 2% lidocaine hydrochloride jelly were applied to the 

incision.  Upon recovering from anesthesia and regaining mobility, the rat was returned to a 

clean cage with a surgical drape and warmed on top of a heating pad, and observed for 3 hours 

before being returned to the animal housing facility.  During the following 7 days after surgery 

and pump placement, the body weight of each animal was recorded and indicators of general 

health, such as lethargy, porphyrin staining, wound healing, and weight loss were assessed and 

recorded on a scale of 0-4.  At post-injury day 7, the infusion cannula and Alzet mini pump was 

removed from each animal 2 hours after the last BrdU injection.  For rats that were sacrificed on 
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post-injury day 7, the pump was removed after transcardial perfusion.  For rats that were 

sacrificed on day 28, removal of infusion pumps was performed under isoflurane anesthetic via a 

nose cone.  After removal, each infusion cannula was examined for blockage and the remaining 

fluid in the mini-osmotic pump was also examined. 

BrdU injections 

To label dividing cells, all rats were given single daily intraperitoneal injections of 5-

bromo-2-deoxyuridine (BrdU) at a dosage of 50 mg/kg for 6 consecutive days starting at 48 

hours post-injury.  One group of animals was sacrificed at post-injury day 7 for the purpose of 

studying the effects of exogenous bFGF administration on cell proliferation as compared to 

injured rats and non-injured sham rats infused with the vehicle.  A second group of rats was 

permitted to survive until 4 weeks post-injury for the purpose of assessing newly generated 

neural precursor cell survival and determining the maturational fates of these cells.  This 

particular group was also used to assess recovery of cognitive function with a novel object 

recognition test and the Morris water maze test. 

Tissue processing 

Animals were euthanized at either 7 or 28 days post-injury with deep isoflurane 

anesthesia, then transcardially perfused with 300-400 ml 1x phosphate buffer saline (PBS) 

followed by 300-400 ml 4% paraformaldehyde in PBS.  The brains were then dissected out and 

post-fixed in 4% paraformaldehyde in PBS for 48 h at 4º C, after which the fixative was changed 

with PBS.  A vibratome was used to cut the brains coronally into 60 µm sections throughout the 

rostro-caudal extent of the brain.  Sections were collected into 24-well plates filled with PBS 
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plus 0.01% sodium azide and were stored at 4º C.  Four sets of 30 sections were collected from 

each brain so multiple types of immunostaining could be performed. 

Immunohistochemistry 

From each brain, one set of 30 serial sections was processed for BrdU 

immunohistochemistry in order to assess the number of dividing cells labeled with BrdU.  From 

the group of animals sacrificed at 7 days post-injury, one set of 30 serial sections from each brain 

was processed for neuronal marker doublecortin (DCX) immunohistochemistry in order to assess 

generation of new neurons.  Parallel sections were selected from the brains of rats sacrificed at 

28 days post-injury and double-labeled with BrdU and a cell type specific marker including 

NeuN (mature neuron), GFAP (astrocyte), or ED1 (infiltrating macrophages and activated 

microglia) for the purpose of determining the maturational fate of the newly-generated cells. 

BrdU immunostaining 

Sections were washed 2 times for 5 minutes with PBS, and DNA was denatured with 

50% formamide for 60 min at 60 ºC.  After washing with 2x saline sodium citrate (SSC) 3 times 

for 5 min, the sections were incubated with 2N HCl for 30 min at 37 ºC.  Following the 

denaturing process, sections were washed with 1x PBS 3 times for 5 min and incubated at room 

temperature for 1 hr in 3% H2O2 in order to block endogenous peroxidase.  After washing 3 

times with 1x PBS for 5 minutes, sections were blocked overnight in 5% normal horse serum (in 

1x PBS with 0.3% Triton) and then incubated with mouse anti-BrdU antibody (Dako, CA) for 48 

hrs at 4 ºC.  For this step, the primary antibody was prepared at a ratio of 1:200 in 5% normal 

horse serum, and 300 µl were added to each well.  After this 48 hr incubation, the sections were 

washed in 1x PBS with 0.3% Triton 3 times for 10 min in preparation for the addition of the 
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secondary antibody, which was biotinylated anti-mouse-IgG (Jackson Laboratories, ME).  For 

this step, the secondary antibody was prepared at a ratio of 1:200 in 5% normal horse serum, and 

300 µl were added to each well.  After incubating the sections for 24 hrs in the secondary 

antibody, the sections were washed in 1x PBS with 0.3% Triton 3 times for 10 minutes and once 

with 1x PBS for 5 minutes.  The avidin-biotin complex (ABC kit, Vector Laboratories) was 

prepared 30 minutes before use at a concentration of 1:200 avidin and 1:200 biotin combined 

with a peroxidase included in the ABC kit into 1x PBS.  300 µl of ABC was added to each well, 

and the sections were incubated at room temperature for 2 hrs.  The sections were then washed in 

1x PBS 3 times for 10 minutes.  The sections were then briefly incubated in a chromogen 5, 5-

diaminobenzidine (DAB) solution at room temperature.  To make the DAB solution, 2 drops of 

phosphate buffer at pH 7.5, 4 drops of 3,3’-Diaminobenzidine, and 2 drops of  hydrogen 

peroxide were added to each 5 ml of dH2O using a Vector DAB kit.  The reaction was observed 

under a microscope until the sections were stained adequately and then quenched by adding 1x 

PBS to the wells.  The sections were washed with 1x PBS 3 times for 5 minutes and stored at 4º 

C before mounting.  The sections were washed in dH2O and mounted to glass microscope slides. 

DCX immunostaining 

The staining procedure is similar to BrdU immunostaining, with the only difference being 

that the DNA denaturing process with formamide and HCl was omitted.  Briefly, sections were 

washed with PBS, and endogenous peroxidase was blocked in 3% H2O2.  This was followed by 

washing 3 times in 1x PBS with 0.3% Triton for 10 minutes and overnight blocking in 5% 

normal horse serum.  Sections were then incubated with a goat anti-DCX antibody (1:1000, 

Santa Cruz, CA) for 48 hrs at 4 ºC in blocking buffer.  After this, the sections were washed in 1x 

PBS with 0.3% Triton 3 times for 10 min followed by incubation with biotinylated anti-goat IgG 
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(1:200, Jackson Laboratories, ME) for 24 hrs at 4 ºC in blocking buffer.  After wash, sections 

were incubated with ABC complex at room temperature for 2 hrs.  The sections were then 

washed with PBS, and briefly incubated in a DAB solution at room temperature.  The reaction 

was observed under a microscope until the sections were stained adequately and then quenched 

by adding 1x PBS to the wells. Sections were washed with PBS and dH2O before being mounted 

to glass microscope slides. 

Counterstaining procedure 

Mounted sections were placed in water, stained with 0.1% cresyl violet solution for 1 

min, then washed in running tap water, and sequentially placed into increasing concentrations of 

ethanol followed by differentiation of stain in acidic alcohol.  Sections were dehydrated in 100% 

ethanol twice 1 min each, followed by placement in Citrisolv twice 5 min each, and cover 

slipped using Permount. 

Immunofluorescent double-labeling 

For immunoflurescent double-labeling, sections were processed using the same procedure 

described above for BrdU immunostaining and incubated for 48 hrs at 4º C in a rat (1:200, 

Immunologicals Direct, Oxford, UK) or mouse anti-BrdU antibody along with one of the 

following cell type specific markers: rabbit anti-GFAP (1:1000, Dako) to label astrocytes; mouse 

anti-NeuN (1:500, Chemicon) to label mature neurons, and mouse anti- ED-1 (1:1000, 

Chemicon) to label macrophages and activated microglia.  Secondary antibodies used were 

Alexa Fluor 488 anti-rat IgG, Alexa Fluor 488 anti-mouse IgG, or Alexa Fluor 568 anti-rabbit 

IgG (1:200, Molecular Probes) for 2 hours at room temperature. After washing with PBS and 
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water, sections were mounted on glass slides and cover slipped with Vectorshield mounting 

media (Vector Labs, CA). 

Stereological quantification 

 Quantification of the number of BrdU-positive and DCX-positive cells was carried out in 

the hippocampal dentate gyrus (DG).  BrdU or DCX stained sections were examined using the 

Olympic Image CAST program (Olympus, Denmark).  Ten 60 µm thick sections spaced 240 µm 

apart at the level of the DG were selected from each brain and examined using unbiased 

stereological methods.  Cells of interest in the ipsilateral and contralateral granule cell layer 

(GCL) including subgranular zone (SGZ) and hilus were counted throughout the entirety of each 

region.  For this study, the granular zone and subgranular zone were counted together as the 

granule cell layer.  This was carried out by outlining the region of interest under 4x objective, 

then counting the cells within the region of interest under 60x oil immersion objective focusing 

through the thickness of the section.  Cells in the upper and lower most focal planes were 

ignored.  Average section thicknesses were obtained by measuring the depth of each section 

from one focal plane to another in 5 different randomly selected locations in the DG.  Since 

counting frames were not used, and the entire region of interest was counted for each section 

rather than random samples, the average sampling fraction (asf) was equal to 1.  The dissector 

height (h=15µm) was known relative to the section thickness (t).  With these parameters in 

place, the total number of cells counted was estimated as N = (∑Q)(t/h)(1/asf)(1/ssf), where ssf 

was the section-sampling fraction (=0.25), and ∑Q was the raw number of cells counted. 
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Confocal microscopy 

 Immunofluorescent double-labeled sections were examined using a confocal microscope 

(Leica TCS SP2) in order to quantify the percentage of BrdU-positive cells that have 

differentiated to neurons, astrocytes, or microglia.  The entire granule cell layer of each section 

was examined through its entire thickness, and every BrdU-positive cell was scrutinized to assess 

the co-localization of BrdU with cell type specific markers.  Each BrdU-positive cell in the 

granular zone was manually viewed in its full z dimension, and only those cells for which the 

BrdU-positive nucleus was unambiguously associated with a given cell type specific marker was 

considered to be co-labeled.  The percentage of co-labeled cells was calculated as the number of 

BrdU+/NeuN+, BrdU+/GFAP+, or BrdU+/ED1+ cells against the total number of BrdU-positive 

cells.  

Novel object recognition test 

To assess cognitive function, animals that were sacrificed at 4 weeks post-injury were 

evaluated with a novel object recognition test (NOR) at 3, 7, 14, and 28 days post-injury.  The 

object recognition chamber used for this study was a 4 ft. x 4 ft. x 2 ft. box with a wooden 

bottom painted white and Plexiglas walls lined with opaque white paper externally.  The 

chamber was divided into 4 quadrants.  Objects were fastened with Velcro at the center of 

diagonally opposed quadrants, and the same quadrants were utilized throughout the entire study 

for consistency.  Many different objects which varied in size, shape, color, and material were 

used for testing.  Each animal being tested was individually habituated to the new environment 

of the chamber for 30 minutes without any objects present 24 hours before testing.   For the first 

part of the NOR test, each rat was placed into the chamber alone with 2 identical sample objects 

for 5 minutes, then removed from the chamber for a period of 30 seconds while one of the 
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objects was replaced with a new object different from the sample.  After the 30 second delay, the 

rat was placed back into the chamber for 5 minutes and allowed to explore the objects.  For the 

second part of the NOR test, the rat was placed in the chamber for 5 minutes with 2 identical 

sample objects different from the objects used in previous tests.  After a 4 hr. delay, the rat was 

placed back into the chamber for 5 min. with one of these sample objects and a novel object.  All 

testing was performed in a dimly lit room to minimize any visual cues external to the chamber.  

The chamber and all objects were sprayed with 75% EtOH in H2O and wiped clean between 

animals, allowing enough time for the EtOH to evaporate.  All testing was recorded to VHS with 

a video camera mounted above the chamber, and tapes were later viewed to document the 

amount of time each animal spent exploring each individual object during the sample and testing 

phases.  The same procedure was used on each day of testing, and no objects were reused for the 

same animal on a later test. 

Morris water maze: Latency and probe trial 

The Morris water maze performance (MWM) has been established as a valid method of 

assessing hippocampal-dependent cognitive function in rats (Brandeis et al. 1989, Hamm 2001).  

A total of 16 rats were assessed for cognitive function using the MWM on post-injury days 21-25 

and a probe trial on post-injury day 26.  A large circular tank 180 cm in diameter and 45 cm high 

was used for testing.  The tank was filled to a depth of 30 cm with water which was maintained 

at 25-28º C.  White latex-based paint was mixed into the water for opacity and a goal platform 

was concealed under the water 45 cm from the edge of the tank in the center of the southeast 

quadrant (Fig. 2.3).  The testing was performed in a room with numerous external visual cues 

that remained constant throughout testing.  Each rat was given 4 trials per day for 5 consecutive 

days.  Each rat was placed on the goal platform for 30 seconds on the first day before any trials 
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were run in order to be habituated to the goal location.  Rats were placed into the maze facing the 

wall at one of 4 starting points (N, S, E, or W) for each trial and each possible starting point was 

used once per day in a randomized fashion.  Once the goal was reached, rats were allowed to stay 

on the hidden platform for 30 seconds.  Rats were given a maximum of 120 seconds to find the 

platform and were placed on the platform for 30 seconds after this time.  Rats were placed in an 

incubator between trials.  Latency and path length was recorded using a video tracking system 

(Videomex, Columbus Instruments, Columbus, OH).  In order to rule out any motor deficits that 

could potentially affect performance, swim speeds were calculated from each trial and compared 

between rats.  Each rat was tested with a single probe trial the day following the final latency 

trial.  For this test, the platform was removed from the tank and each rat was placed into the 

water facing the wall from a random starting point (N, S, E, or W).  Rats were allowed to swim 

for 60 seconds then removed from the tank.  The Videomex video tracking system was used to 

determine the amount of time each rat spent swimming in the goal quadrant and average 

proximity to the goal location. 

Statistical analysis 

All statistical analysis of data was done using SPSS software.  A one-way ANOVA was 

used to determine any statistically significant differences in cell quantification and probe trial 

data, and post-hoc Student t-test was used to determine differences within groups, with p value 

less than 0.05 being considered statistically significant.  MWM data was analyzed using a 

repeated measure ANOVA with the exception of swim speed, which was analyzed using a one-

way ANOVA. All data are presented as mean ± SEM. 
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Figure 2.3: Morris water maze.  An illustration the Morris water maze apparatus.  A rat 

is placed in a tub of water and is allowed to search for a hidden platform while a camera 

connected to a computer records the movements of the rat and the length of time it takes for the 

rat to reach the goal. 
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 Chapter 3 – Results 

 

 Based on previous studies done in our lab, intraventricular infusion of bFGF enhances the 

neurogenic response in the SVZ and in the hippocampal dentate gyrus, and improves cognitive 

recovery in adult rats following TBI.  The aim of this study was to determine if treatment with 

bFGF following injury similarly improves neurogenesis and cognitive recovery in aged rats.  In 

this study, a total of 47 Fisher 344 rats at the age of 20 months were used.  Of the 47 rats, 17 died 

either immediately following TBI or within the first week following TBI.  The calculated 

mortality rate for rats used in this study was 36.2%, which is similar to what was reported before 

(Hamm et al., 1991). 

Righting response 

 The post-injury righting response was used to assess whether a similar level of injury was 

received by all animals injured in this study.  The amount of time required for the return of the 

righting reflex, or duration of righting response suppression, is related to neuromotor deficits and 

is a valid indicator for determining injury severity (Morehead et al. 1994, Hamm 2001).  

Righting times were recorded for each injured animal and compared between those animals that 

received bFGF infusion and those that received vehicle infusion.  The mean (±SEM) duration of 

righting response suppression following injury was 15.89±1.34 min for the vehicle-infused 

animals and 12.92±1.31 min for bFGF-infused animals.  A t-test was performed on this data 
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which demonstrated no significant difference between the righting times of bFGF- versus 

vehicle-treated rats (p=0.14), supporting the conclusion that a similar level of injury severity was 

received by both groups. 

Effect of bFGF treatment on cell proliferation in the hippocampal dentate gyrus 

 In order to assess whether the injury-induced cell proliferation response in the DG of 

aged animals could be further augmented through exogenous bFGF administration, these animals 

were subjected to a moderate L-FPI followed by a 7-day infusion of recombinant bFGF into the 

lateral ventricle ipsilateral to the site of injury.  Animals received daily single BrdU injections 

from 2 days post-injury for 6 days to label proliferating cells.  These animals were then 

sacrificed at 7 days post-injury and processed for BrdU immunohistochemistry. 

 In the sham animals, a few BrdU-labeled proliferating cells were observed in the SGZ of 

the DG (Fig. 3.1).  In the injured animal, a massive amount of BrdU-labeled cells was found in 

the ipsilateral DG in the granule cell layer (including SGZ) and the hilus region, as well as the 

outer molecular layers in animals either bFGF or vehicle-treated as compared to sham animals 

(Fig.3.1).  Stereological quantification of BrdU-positive cells in selected subregions within the 

DG showed that the total number of proliferating cells was significantly enhanced in the 

ipsilateral GCL (SGZ included) and hilus of injured animals receiving vehicle or bFGF infusion 

compared to sham (Fig. 3.2a & b, p<0.05).  In injured animals, the number of BrdU-positive 

cells in the ipsilateral GCL was higher in the bFGF-treated group than vehicle-treated animals, 

but did not reach statistical significance (p=0.36, Fig. 3.2b).  No significant difference was found 

in the total number of BrdU-positive cells in the contralateral GCL and hilus regions (Fig. 3.2a 

and b). 
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Figure 3.1.  Cell proliferation at 7 days post-injury.  Micrographs taken from BrdU stained 

coronal sections in the ipsilateral DG from sham, injured with vehicle or bFGF treated animals 

show that, a) in the sham animal, a few BrdU-positive cells were located mostly in the SGZ of 

the DG; b) in the injured vehicle-treated animal, a massive amount of BrdU-labeled cells in the 

ipsilateral DG in the GCL (including SGZ) and the hilus region, as well as the outer molecular 

layers; c) similar pattern of BrdU staining as shown in (b) was observed in injured bFGF-treated 

animals. Brown dots indicated BrdU-labeling.  Bar scale = 500µm. 
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Figure 3.2: Quantitative analysis of the degree of cell proliferation in the granule cell layer 

and hilus in the DG at 7 days post-injury.  a) In the GCL (SGZ included), compared to sham 

animals, injured animals treated with either vehicle or bFGF had a significant increase in the 

total number of BrdU-positive cells in the ipsilateral GCL (F2,9=4.34, *p<0.05) but not in the 

contralateral GCL.  Among injured animals, the total number of BrdU-positive cells in the 

ipsilateral GCL in the bFGF-treated group was higher than vehicle-treated group, but did not 

reach statistical significance (p=0.36).  b) In the hilus region, injured animals had a significantly 

higher number of BrdU-positive cells than sham animals in the ipsilateral side (F2,9=4.29, 

*p<0.05), but not in the contralateral side.  Among injured animals, no significant difference in 

the number of BrdU-positive cells was found between groups (p=0.81).   
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Effect of bFGF treatment on generation of new neurons 

 To assess whether bFGF can augment generation of new neurons in the aged brain 

following injury, every 4
th

 section from animals sacrificed at 7 days post-injury were stained for 

early neuronal marker DCX.  Examination of DCX-positive cells in the aged rat DG revealed 

that DCX-labeled neuronal cell bodies were primarily localized in the SGZ (Fig. 3.3a).  Various 

types of dendrite morphologies were observed, including neurons with vertically oriented 

dendrites, horizontally oriented dendrites, or a mixture of the two (Fig. 3.3b).  DCX-labeled cell 

bodies were quantified using stereological methods and each cell was classified according to its 

dendrite morphology as vertical, horizontal, or mixed.  Stereological quantification of DCX-

positive cells in the ipsilateral and contralateral GCL (SGZ included) showed a significantly 

enhanced level in the number of DCX+ cells in both ipsi- and contralateral GCL in the bFGF-

infused animals following injury as compared to injured vehicle-infused animals and sham 

animals (Fig.3.3a, p<0.01).  There were no significant differences in the number of DCX+ cells 

in the GCL in vehicle-infused injured animals and sham animals both ipsilaterally and 

contralaterally (Fig. 3.4a).  In the hilus region, the number of DCX+ cells was higher in the 

ipsilateral side in the injured animals with vehicle or bFGF treatment than in sham animals, but 

did not reach statistical significance (Fig 3.4b, F2,9=1.36, p=0.30).  No significant differences 

were seen in the ipsilateral hilus among the two injured groups (Fig. 3.4b).  In the contralateral 

hilus, the injured bFGF-treated group had a higher number of DCX+ cells than the vehicle 

treated or sham groups, but did not reach statistical significance (Fig.3.4b F2,9=3.08, p=0.10).  

These data indicate that post-TBI administration of bFGF enhances generation of new neurons in 

the ipsilateral and contralateral granule cell layer in injured aged rats. 
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Figure 3.3: Generation of newly-generated neurons as labeled with DCX in the dentate 

gyrus in aged rats at 7 days post- injury.  a) Photograph shows a few DCX-positive cells in 

the aging DG clustered primarily in the SGZ as indicated by arrows.  b) DCX-stained neurons 

with vertically oriented dendrites (arrows), horizontally oriented dendrites (arrow head), or a 

mixture of the two were observed.   
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Figure 3.4: Quantitative analysis of the total number of newly-generated cells as labeled 

with DCX in the dentate gyrus at 7 days post-injury.  a) In the GCL, injured animals treated 

with bFGF had a significantly higher number of DCX-labeled new neurons in both the ipsilateral 

and contralateral GCL (ipsilateral GCL: F2,9=18.32, *p<0.01; contralateral GCL: F2,9=8.90, 

*p<0.01).  There were no significant differences in the number of DCX+ cells between injured 

vehicle-infused animals and sham animals both ipsilaterally and contralaterally. b) In the hilus 

region, injured animals treated with either vehicle or bFGF had a higher number of DCX-

positive cells in the ipsilateral side compared to sham, but was not significant (p=0.30); no 

difference was found among the injured groups.  In the contralateral hilus, the injured bFGF-

treated group appeared to have a higher number of DCX-positive cells than injured vehicle-

treated or sham groups, but no significant difference was found (p=0.10). 



www.manaraa.com

 
 

63 
 

Effect of bFGF on survival of newly generated cells 

In order to assess whether bFGF treatment can enhance long term survival of the newly-

generated cells, every 4
th

 brain section from animals sacrificed at 4 weeks post-injury were 

processed for BrdU immunohistochemistry and the number of BrdU-positive cells in the DG was 

quantified.  At 4 weeks post-TBI, a few sparse BrdU-labeled proliferating cells were observed in 

the DG in sham animals (Fig. 3.5).  In the injured animal, a large amount of BrdU-labeled cells 

was observed in the ipsilateral DG in the GCL (with SGZ) and the hilus region, as well as the 

outer molecular layers in injured animals either bFGF or vehicle-treated as compared to sham 

animals (Fig.3.5).  Stereological assessment was done in a similar manner as described for the 7 

days post-injury assessment.  The total number of BrdU-positive cells counted in the ipsilateral 

GCL (with SGZ) and hilus was significantly higher in injured animals treated with either bFGF 

or vehicle compared to sham animals (3.. 6a and e; GZ, p<0.01; hilus,  p<0.05).  In the ipsilateral 

GCL (with SGZ) and hilus in bFGF-infused animals, the number of BrdU-positive cells was 

higher than vehicle-treated animals; however, the difference was not statistically significant (Fig. 

3.6a and b; GCL, p=0.06; hilus, p=0.09).  In the contralateral GCL (with SGZ), in comparison to 

sham animals, the total number of BrdU-labeled cells was significantly higher in vehicle-treated 

injured animals (Fig. 3.6a, p<0.001), and higher in bFGF-treated injured animals, although not 

reaching statistical significance (Fig. 3.6a, p=0.06).  No significant differences in the number of 

BrdU-positive cells were found between groups in the contralateral hilus (Fig. 3.6b).  These data 

suggest that many of the cells generated following TBI persist for an extended period of time, 

and treatment with bFGF following injury does not significantly affect the survival of these cells. 
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Figure 3.5: Survival of newly-generated cells in the DG at 28 days post-injury.  Micrographs 

taken from BrdU stained coronal sections in the ipsilateral DG from a) sham, b) injured with 

vehicle and c) bFGF treated animals.  a) In the sham animal, there were very few BrdU-positive 

cells in the DG. b-c) Many BrdU-labeled cells persisted in the ipsilateral DG in the injured 

vehicle-treated (b) and bFGF treated (c) animals.  Brown dots indicated BrdU-labeling.  Bar 

scale = 500 µm.   
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Figure 3.6: Quantitative analysis of surviving newly-generated cells as labeled by BrdU in 

the DG at 28 days post-injury.  a) In the GCL, a significantly higher number of BrdU-positive 

cells were found in the injured animals treated with vehicle or bFGF compared to sham in both 

the ipsilateral and contralateral sides (F2,7=12.80, **p<0.01; F2,7=5.91, *p<0.05).  b) In the hilus, 

injured animals treated with vehicle or bFGF had significantly more BrdU-positive cells in the 

ipsilateral side than sham (F2,7=7.56, *p<0.05).  No difference was found in the contralateral 

hilus (F2,7=1.75, p=0.24).   
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Differentiation of newly generated cells 

 To assess the maturational fate of cells generated following TBI, sections from animals 

sacrificed at 4 weeks post-injury were processed for immunofluorescent double-labeling for 

BrdU combined with NeuN, GFAP, or ED1, which are cell type specific markers for mature 

neurons, astrocytes, or infiltrating macrophages and microglia, respectively.  Immunofluorescent 

stained sections were examined using confocal microscopy.  Some BrdU-positive cells in the GZ 

were co-labeled with NeuN in all three groups (Fig. 3.7a-c).  BrdU and GFAP co-labeling were 

also found in all three groups (Fig. 3.7d-f).  For BrdU-ED1 double staining, no co-localization of 

these two markers was found in the GZ in sham animals.  However, there were many BrdU-ED1 

co-labeled cells in the GZ in injured animals with vehicle or bFGF treatment.   

Cells which were unambiguously co-labeled with BrdU and each of the aforementioned 

cell type specific markers were quantified and used to calculate their respective percentages 

against the total number of BrdU-labeled cells in the GZ.  Preliminary data showed that in sham 

animals roughly 45% of BrdU-positive cells in the GZ are co-labeled with NeuN (Fig. 3.8).  In 

injured animals, a lower percentage of BrdU-positive cells in the GZ are co-labeled with NeuN 

compared to sham animals.  Of the BrdU-positive cells observed in the GZ of injured animals, 

about 15% were co-labeled with NeuN in vehicle-treated animals, and about 25% were co-

labeled with NeuN in bFGF-treated animals (Fig. 3.8).  Of the total number of BrdU-positive 

cells counted in the GZ in sham animals, approximately 25% were co-labeled with GFAP (Fig. 

3.8).  In vehicle-treated injured animals, nearly 40% of BrdU-positive cells in the GZ were co-

labeled with GFAP, and in bFGF-treated injured animals, nearly 30% of BrdU-positive cells in 

the GZ were co-labeled with GFAP (Fig. 3.8).  Whereas no BrdU-positive cells in the GZ in 

sham animals were co-labeled with ED1, approximately 30% of BrdU-positive cells in the GZ of 
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vehicle-treated injured animals were were co-labeled with ED1, and approximately 35% of 

BrdU-positive cells in the GZ of bFGF-treated injured animals were co-labeled with ED1 (Fig. 

3.8).   

This preliminary evaluation of post-TBI cell differentiation in the aged brain suggests 

that a smaller percentage of the newly-generated cells which survived for 4 weeks had become 

mature neurons in injured animals regardless of treatment compared to sham animals.  The 

percentage of astrocytic differentiation was similar in sham animals and injured animals.  

Strikingly, in contrast to what was seen in sham animals where no BrdU/ED1 co-localization 

was found, in injured animals either treated with bFGF or vehicle, many of the BrdU+ cells were 

ED1+ infiltrating macrophages or activated microglia.  Overall, these preliminary data showed a 

trend of a decreased neuronal survival and apparent inflammatory response in the DG in the 

injured aged brain, and bFGF treatment did not show any protective or detrimental effect in this 

regard.   
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Figure 3.7: Differentiation of newly-generated cells at 28 days post-injury.  a-c) Neuronal 

differentiation. Confocal microscopic images showing a newly generated BrdU-labeled cell as 

indicated by arrow co-labeled with NeuN indicating that this cell differentiated into a mature 

neuron. Note several BrdU-positive cells were not co-labeled.  d-f) Astrocytic differentiation. 

The arrow indicated a BrdU-labeled new cell with cytoplasm and processes staining of GFAP.  

This co-localization is best viewed through the z axis. g-i)  Co-labeling with ED1. Arrows 

pointed to two BrdU-positive cells co-labeled with ED1 in the GCL.  Bar scale = 100µm 
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Figure 3.8: The percentage of neuronal or glial differentiation rate of the newly-generated 

cells in the GCL at 4 weeks post-injury.  Cells in the GCL which were co-labeled with BrdU 

and NeuN, GFAP, or ED1 were calculated as a percent of co-labeling of each marker against the 

total number of BrdU-positive cells.  A smaller percentage of the newly generated cells which 

survived for 4 weeks had become mature neurons in injured animals regardless of treatment 

compared to sham animals.  The percentage of cells which differentiated into astrocytes was 

similar in sham animals and injured animals.  No BrdU/ED1 co-localization was found in sham 

animals; however, in injured animals either treated with bFGF or vehicle, many of the BrdU+ 

cells were ED1+ infiltrating macrophages or activated microglia.   
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Cognitive Function: Novel object recognition 

 This study employed the novel object recognition test as one measure of cognitive 

recovery following TBI.  Rats were tested on post-injury days 3, 7, 14, and 28 for their ability to 

recognize a novel object 30 seconds and 4 hrs after being exposed to sample objects for 5 min.  

Each rat’s ability to recognize a novel object was measured by examining the amount of time 

spent exploring each object and the number of encounters with each object.  In general, the rats 

did not respond well to the test and demonstrated considerable lethargy throughout the course of 

testing.  Based on the data obtained, sham animals and injured animals alike spent very little time 

exploring the sample and novel objects in all phases of testing, often not encountering any of the 

objects in multiple trials throughout the time course of the test.  Furthermore, statistical analysis 

using a split-plot analysis of variance (repeated measures ANOVA) showed no significant Group 

effect, Day effect, or Group x Day interaction for exploration time or object encounters between 

time points or among the animal groups. 

Cognitive Function: Morris water maze latency and probe trial 

 Past studies in our lab have shown that moderate L-FPI induces cognitive deficits which 

recover over time and that the time course of this spontaneous cognitive recovery corresponds 

with the timeframe in which new granule neurons generated post-TBI integrate into existing 

hippocampal neuronal circuitry (Sun et al. 2007).  Furthermore, post-TBI infusion of bFGF was 

shown to enhance TBI-induced neurogenesis in the DG as well as promote cognitive recovery in 

adult rats as assessed by the Morris water maze test (Sun et al. 2009).   

In this study, the MWM followed by a probe trial was used to examine whether post-TBI 

infusion of bFGF improves cognitive function in aged rats as seen in younger rats.  MWM tests 
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were performed daily from 21-25 days post-injury, and the probe trial was run the following day 

after MWM testing was completed (24 hrs later).  Latency to reach the goal platform was used as 

a measure of cognitive function.  The mean latency (s) to reach the goal platform for each group 

is presented in Fig. 3.9 (±SEM).  The data were analyzed using a split-plot analysis of variance 

(repeated measures ANOVA, Group x Day).  The results of the ANOVA did not reveal any 

significant differences in Group effect (F2,13=0.73, p=0.50) or Day x Group interaction 

(F2,13=0.86, p=0.56).  The results of the ANOVA did reveal a significance in Day effect 

(F2,13=21.00, p<0.001).  Overall, goal latency was significantly shorter in all groups by the fifth 

day of MWM testing; however, no significant differences in goal latency between groups were 

found.   

For the probe trial, the platform was removed from the pool and each rat was allowed to 

swim for 1 min while the average proximity (cm) to the location of the goal and time spent in the 

goal quadrant (s) were recorded.  Based on the data obtained from the probe trial, bFGF-treated 

injured animals appeared to spend less time in the goal quadrant than vehicle-treated injured 

animals or sham animals (Fig. 3.10a); however, no statistical difference was found upon analysis 

(F2,13=3.54, p=0.06).  The average proximity to goal location for each group is presented in Fig. 

3.10b.  No significant differences in goal proximity were found between the groups (F2,13=1.28, 

p=0.31).  No significant differences were observed in swim speed between groups, 

demonstrating that motor deficits did not contribute to any potential differences in the recorded 

latencies (F2,13=2.79,  p=0.10). 
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Figure 3.9: Hippocampal-dependent learning tests using Morris water maze performance.  

All animals were tested with the MWM at 21-25 days post-injury.  Latency to reach the goal 

platform was used as a measure for cognitive function.  Injured-vehicle treated animals spent a 

slightly longer amount of time learning to locate the platform than bFGF treated or sham 

animals, but no significant differences were found between groups (F2,13=0.73, p=0.50).  All 

groups showed significant improvement in goal latency by the fifth day of testing (F2,13=21.00, 

p<0.001). 
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Figure 3.10: Memory retention tests with Probe trial.  a) The time spent in the goal quadrant, 

and b) the average proximity to the goal location.  Injured animals infused with bFGF appeared 

to spend less time in the goal quadrant than vehicle-treated injured animals or sham animals, but 

no significant difference was found (F2,13=3.54, p=0.06).  No significant differences in goal 

proximity were found between the groups (F2,13=1.28, p=0.31).   
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Chapter 4 – Discussion 

 

 Traumatic brain injury is a major healthcare concern as it is a debilitating condition for 

which an adequate cure has not yet been developed.  One of the foremost challenges faced in the 

development of an effective treatment for TBI is the limited capacity of the mature CNS to 

regenerate and repair itself after it has been damaged.  Although many of those suffering from 

TBI achieve functional recovery to a certain extent, clinical and laboratory research has shown 

convincingly that old age leads to poorer outcomes following TBI (Eiben et al., 1984; Hamm et 

al., 1991; Senathi-Raja et al., 2010).  Following the discovery of the existence of neural stem/ 

progenitor cells in the mature mammalian CNS, recent progress in this research area has 

evidenced that neural stem/progenitor cells acting as an innate repair mechanism could 

contribute to the recovery and regeneration of the injured brain (Sun, 2005; Gould and Gross, 

2002; Chirumamilla, 2002; Temple and Alvarez-Buylla, 1999).  However, thus far, studies have 

also shown that this reparative capacity is limited, especially in the aging population (Kuhn et al., 

1996).  The spontaneous cognitive recovery observed following injury, as well as normal 

hippocampal-dependent learning and memory function, has been correlated to the generation of 

new neurons in the dentate gyrus in the mature mammalian CNS (Sun et al., 2007; Kempermann 

and Gage, 2002).  As the brain ages, the degree of endogenous neurogenesis in the hippocampus 

decreases, which corresponds with a diminished ability for the aged brain to achieve cognitive 

recovery in the event of brain insult (Kuhn et al., 1996).  It is thought that these age-related 
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changes in neurogenesis may be due, in part, to changes in trophic support for newly generated 

cells, as decreased levels of mitogenic growth factor expression have been observed in the aged 

brain (Mudo et al., 2009).  Because growth factors play an essential role in regulating neural 

stem/progenitor cells, growth factors could be a potential therapy for TBI in the particularly 

vulnerable aged population through enhancing endogenous repair mechanisms.    

 Previous studies have shown that several growth factors that drive the proliferation and 

differentiation of cells in the CNS during development continue to be expressed in declining 

levels as the CNS matures (Cintra et al., 1994; Shetty et al., 2005).  Expression levels of EGF 

and bFGF in particular experience a sharp decline as the brain ages, but are increased 

significantly following TBI (Mattson and Scheff, 1994; Oyesiku et al. 1999).  These growth 

factors have been shown in vitro and in vivo to be important regulators of neural stem and 

progenitor cell proliferation, differentiation, and survival (Caday et al., 1990; Plata-Salaman, 

1991).  Subsequently, recent studies in our lab have attempted to evaluate EGF and bFGF as 

potential treatments for TBI.  Exogenous administration of EGF following TBI in adult rats was 

found to enhance TBI-induced cell proliferation in the SVZ and hippocampus and to aid in 

cognitive recovery, while having no effect on neurogenesis (Sun, 2010).  Treatment of adult rats 

with bFGF infusion was shown to further augment the TBI-induced proliferative response and 

significantly enhance neurogenesis and cognitive recovery following injury (Sun, 2009).  In light 

of the positive neurogenic effects of bFGF in adult rats, the current study sought to evaluate the 

effectiveness of exogenous bFGF administration as a treatment for TBI in aged rats.  Therefore, 

we hypothesized for this study that bFGF infusion following injury would enhance neurogenesis 

and cognitive recovery in older subjects as seen in their younger counterparts. 
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Results summary  

In this study, aged rats were subjected to moderate L-FPI followed by infusion of either 

bFGF or a vehicle solution into the lateral ventricle for a period of 7 days post-injury.  

Evaluation of newly-generated cells at 7 days post-injury with BrdU-labeling revealed that TBI 

substantially enhances cell proliferation in the ipsilateral hippocampal DG in the aged brain.  At 

7 days post-injury, bFGF infusion slightly further enhanced the TBI-induced proliferative 

response in the ipsilateral GCL.  Though the effect of bFGF in augmenting TBI-induced cell 

proliferation was not statistically significant, the level of neurogenesis at 7 days post-injury was 

significantly increased in bFGF-treated animals in both the ipsi- and contralateral dentate gyrus 

as assessed by DCX staining.  Injured vehicle-treated animals showed no difference in the 

number of newly generated DCX+ neurons in the ipsi- or contralateral GCL compared to sham 

animals.  In the hilus region, where neuronal cell loss is often observed following TBI, injured 

animals in both the vehicle and bFGF treated groups had enhanced cell proliferation, and bFGF 

showed no further enhancement.   

To examine the survival of newly-generated cells, brain sections taken from animals 

which survived for 28 days post-injury were processed for BrdU immunohistochemistry, and 

BrdU-positive cells were quantified.  A significantly higher number of BrdU-labeled cells were 

observed in the ipsi- and contralateral GCL as well as the ipsilateral hilus in injured animals 

compared to shams.  A slightly higher number of BrdU-positive cells were counted in the 

ipsilateral GCL and hilus in bFGF-treated injured animals compared to vehicle treated animals, 

though this trend was not statistically significant.   
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In order to assess the maturational fate of the newly generated cells which persisted in the 

GCL at 4 weeks post-injury, brain sections were double-labeled with BrdU and cell-type specific 

markers including NeuN, GFAP, and ED1.  By examining the co-labeling of BrdU with NeuN, it 

was determined that a larger percentage of newly generated cells appeared to differentiate into 

neurons in sham animals than injured animals either with bFGF or vehicle infusion.  As detected 

by co-labeling of BrdU with GFAP, the percentage of astrocytic differentiation of newly 

generated cells was similar in sham animals and injured animals regardless of treatment.  

Remarkably, in contrast to what was found in sham animals where no BrdU+ cells were co-

labeled with ED1, injured animals treated with either bFGF or vehicle had a large number of 

BrdU-positive cells which were ED1-positive.   

To assess whether bFGF infusion can improve cognitive functional recovery of aged rats 

following TBI, cognitive functions were tested with a novel object recognition test (NOR) and 

Morris water maze test.  NOR was tested on days 3, 7, 14 and 28 following TBI.  No differences 

or trends were observed in the amount of time all injured animals or sham animals spent 

exploring the objects or in the number of times encountering the objects in either the 30 sec trials 

or the 4 hr trials.  Morris water maze tests were performed on 21-25 days post-injury for goal 

latency tests and followed by a probe trial 24 hrs later after the last latency test.  Sham and both 

groups of injured animals demonstrated significant improvement in learning over the course of 

the 5 days of latency trials, and there was no significant difference between the groups.  For the 

probe trial, no significant differences were found between groups in the analysis of time spent in 

the goal quadrant or in the proximity analysis.  
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TBI induces a proliferative response in the dentate gyrus of the hippocampus  

We found in this study that TBI produced a significant proliferative response in the DG 

of the hippocampus in both vehicle- and bFGF-treated injured aged rats.  The injury-induced 

proliferative response seen in this study is consistent with our previous research concerning 

endogenous repair mechanisms in the brain following TBI as well as reports from other labs 

(Sun et al., 2007; Chirumamilla et al., 2002; Dash et al., 2001).  Previous work done in our lab 

has shown that cell proliferation following TBI peaks at 2 days post-injury in juvenile and adult 

rats (Sun et al., 2005).  Other data from our lab has suggested that cell proliferation in the GCL 

and hilus of aged rats at 2 days post-injury is increased to levels not significantly different than 

what is seen in adult rats.  The ability of the aged brain to mount such a response following 

injury is indicative of a possible mechanism for repair, although this regenerative potential is 

limited.  Although an increase in newly generated cells was anticipated in the aged brain, how 

this proliferative response directly compares to what is seen in juvenile or adult rats is outside the 

scope of this study.  Very few studies have directly examined trauma-induced cell proliferation 

in the aged brain, and further investigation into this area is necessary to understand the role of 

these newly generated cells in the injured senescent CNS.   

Post-TBI infusion of bFGF does not significantly further enhance TBI-induced cell proliferation 

but does enhance neurogenesis in the aged hippocampus 

 In addition to the proliferative response observed following TBI, exogenous 

administration of bFGF may have the potential to augment this TBI-induced cell proliferation 

and neurogenesis in the injured aged brain.  Previously we found that in 3 month old rats 

treatment with bFGF significantly further enhanced injury-induced cell proliferation in the GCL 
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and hilus (Sun et al., 2009), which led us to hypothesize that a similar effect would be expected 

in the aged rats.  Although an increase in the number of newly-generated cells was observed in 

the ipsilateral GCL of bFGF-infused animals at 7 days post-injury compared to vehicle-treated 

animals, this study did not establish that this effect was significant.  One of the explanations for 

this result is that there was a markedly high variance in the data.  This variance may have been 

caused by human error, such as variations in injury severity, BrdU staining, or stereological 

quantification.  To reduce the variance, higher animal numbers are needed.  It must also be taken 

into account that FGFR expression decreases with age and the ability of NS/NPCs to respond to 

growth factor signaling is altered in the senescent brain.  The juvenile hippocampus displays 

robust expression of FGFRs early in development which declines substantially with age (Brazel 

and Rao, 2004).  The lower number of FGFRs present in the hippocampus may partially explain 

the observed difference in the proliferative response to bFGF in aged animals compared to 

younger animals.  Nevertheless, using DCX as a maker for generation of new neurons, we did 

find that bFGF-infusion produced an elevated level of neurogenesis in the aged DG following 

injury, which is consistent with what is seen in adult rats from our previous bFGF study (Sun et 

al., 2009).   

It is well known that bFGF is involved in regulation of neurogenesis in the normal and 

injured brain (Mudo et al., 2009; Yoshimura et al., 2003; Wagner et al., 1999).  Basic FGF not 

only acts as a potent mitogen, but also plays a role in guiding differentiation, especially in the 

CNS.  Treatment with bFGF may promote differentiation of newly generated cells into a 

neuronal phenotype.  The precise role of bFGF in neurogenesis is not completely understood and 

demands further investigation; however, previous studies have shown that there is an 

endogenous bFGF-mediated increase in neurogenesis in the adult DG following injury, and that 
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bFGF treatment enhances this endogenous neurogenic response (Parent, 2003; Tureyen et al., 

2005; Wagner et al., 1999).  Though we observed enhanced cell proliferation in the aged brain 

following injury, interestingly, we did not observe increased neurogenesis in vehicle-treated 

animals, which suggests that the neurogenic capacity is significantly impeded in the aged CNS.  

This is in accordance with a previous study which demonstrated that the ability of the DG to 

further amplify neurogenesis in the event of brain insult may be lost as early as middle age 

(Hattiangady et al., 2008).  The effect of bFGF to restore the neurogenic capacity in the aged 

brain after TBI suggests its potential therapeutic importance.  

bFGF has no significant effect on the survival of newly generated cells in the aged hippocampus 

We have found a large number of newly proliferated cells persisting in the DG in injured 

animals 4 weeks post-injury regardless of the treatment received.  Our previous studies have 

shown that cell proliferation in the hippocampus reaches its peak at 2 days following injury and 

gradually returns to sham levels by 2 weeks post-injury, with the majority of new cells being 

generated by 1 week post-injury (Sun et al., 2005).  As animals in this study were injected with 

BrdU from days 2-7 post-TBI, only newly proliferated cells from this period of time were 

labeled and counted.  Our results suggested that many of these cells survived for an extended 

period of time; however, we were unable to determine the percentages of newly generated cells 

that survived or degenerated as the brain recovered from injury.  The observed levels of newly 

born cells which survived for 4 weeks after TBI were surprisingly high, and seemed to be 

inconsistent with previously published data.  In the normal adult rodent hippocampus, newly 

generated cells are likely to degenerate within approximately 1-2 weeks of their formation 

(Cameron and McKay, 2001; Dayer et al., 2003).  Various degrees of new cell survival have 

been found in uninjured mice of different ages.  Survival rates after 4 weeks varied from 25% in 
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2 month old mice, to 43% in 6 month old mice, and to 61% in 18 month old mice (Kempermann 

et al,. 1998).  In injured adult rats, 46% of newly generated cells persisted in the DG for 10 

weeks post-injury, indicating an overall decrease in the number of surviving cells over time (Sun 

et al,. 2007).  However, long-term survival of injury-induced proliferating cells has not been 

thoroughly examined in the aged hippocampus, and further evaluation is needed for clarification 

of this phenomenon.  Concerning the number of persistent cells that were found in the aged 

hippocampus in this current study, it must be taken into account that cells which incorporated 

BrdU during mitosis may continue to divide and produce daughter cells which are also BrdU-

positive, although it is plausible that the BrdU staining in these cells would be diluted and would 

not stain as strongly.  Cells undergoing apoptosis may also incorporate BrdU, which may have 

contributed to Type I error in cell quantification.  An assay for apoptotic markers would be 

helpful to add in future studies.  Our current methods of stereological quantification enabled us 

to accurately count BrdU-positive cells, but did not allow us to distinguish between cells which 

were generated during the period of BrdU-labeling, their progeny which may have been 

generated after this period, or cells undergoing apoptosis.  Notwithstanding, these cells were 

counted towards the total number of newly generated cells surviving at 4-weeks post-injury.   

Concerning the effect of bFGF-treatment on newly generated cell survival, we found that 

many BrdU-labeled cells persisted in the DG of the injured aged brain for an extended period of 

time regardless of treatment.  The number of BrdU+ cells that was present in the DG at 4 weeks 

was higher in the bFGF-treated animals than in vehicle-treated animals to the extent that the 

difference between the 2 groups approached significance.  Nevertheless, it is inconclusive 

whether bFGF affects cell survival in the injured aged animal.  It is unknown whether the 

observed levels of new cells surviving for an extended period of time have a beneficial effect on 
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the aged brain following injury.  These new cells might be involved in an attempt to maintain or 

restore normal function or could be a result of TBI-induced inflammation. 

TBI induces a profound inflammatory response in the aged brain which is independent of bFGF 

treatment and which may affect the survival of new neurons 

Based on the preliminary evaluation of the maturational fate of newly-generated cells at 4 

weeks post-TBI, the percentage of neuronal differentiation is decreased in injured aged animals 

compared to sham animals.  Although neurogenesis is decreased in the CNS of normal aged 

animals compared to juvenile or adult animals, a similar percentage of neuronal differentiation is 

found in all age groups (Ahlenius et al., 2009; Rao et al., 2006).  However, in injured rats, a 

much lower percentage of newly generated cells assume a neuronal fate in adult rats as compared 

to juvenile rats, which suggests that the capacity for neuronal differentiation in response to injury 

decreases with age (Sun et al., 2005).  In adult rats, the percentage of newly generated cells in the 

DG that differentiate into neurons in injured animals is similar to what is seen in sham animals 

(Sun et al., 2009).  The findings of this current study suggest that the injured aged brain is 

limited in its capacity to generate new neurons compared to the injured younger brain.   

Neuronal differentiation appeared to be decreased in injured animals at 28 days post-

injury regardless of treatment, which is inconsistent with the increased neurogenesis observed at 

7 days post-injury in bFGF treated animals.  Treatment with bFGF was observed to enhance 

neurogenesis at 1 week post-injury, but this effect was not evident after 4 weeks, which suggests 

that these newly generated neurons did not survive.  These new neurons may have died from lack 

of proper trophic support or may have undergone apoptosis as a result of inflammatory cytokines 

produced following injury.  Basic FGF was seen to have a beneficial effect in promoting a 
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neuronal fate for newly generated cells, but this effect was not sustained.  Future studies should 

include an assay for apoptotic markers along with cell type specific markers in order to more 

thoroughly evaluate the survival of different cell types and to determine what happens to newly 

generated neurons following bFGF treatment in the aged brain. 

While neuronal differentiation appeared to be decreased in the injured aged brain, 

astrocytic differentiation was unaffected by injury.  A similar level of newly generated cells 

differentiated into astrocytes in sham animals and injured animals regardless of treatment.  This 

is consistent with what is found in adult rats (Sun et al., 2009).  It is important to note that the 

percentage of astrocytic differentiation substantially increases with age.  At 2 and 4 weeks post-

injury, the percentage of new cells in the DG which differentiated into astrocytes was 

significantly increased in injured adult rats compared to injured juvenile rats (Sun et al. 2005).  

Furthermore, studies in aged mouse have found that an exacerbated astrocyte and microglial 

response to TBI might contribute to worse cognitive outcomes in the elderly following injury 

(Palermo et al., 2008).  In this study, we have found that a large percentage of newly generated 

cells in injured animals at 4 weeks post-injury were ED1-positive infiltrating macrophages and 

activated microglia.  This contrasted remarkably to what was found in sham animals, where no 

new cells were ED1-positive.  It has been demonstrated previously that aging is associated with 

an increased glial response that may increase the susceptibility of the aged brain to injury, which 

was shown by a stronger and more persistent increase in ED1 expression in aged rats compared 

to younger rats following direct insult to the hippocampus (Zhu et al., 2003).  Taken together, 

these observations suggest that TBI produces a profound inflammatory response in the aged 

brain that may affect the generation and survival of new neurons as well as functional recovery.   
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bFGF has no effect on cognitive recovery in aged rats following TBI 

 Despite the demonstrated positive effect of bFGF-treatment on hippocampal 

neurogenesis following TBI in the aged rat, no effect on cognitive recovery was observed as 

assessed by a novel object recognition test and the Morris water maze test.  It is well established 

that old age is associated with poor cognitive outcomes following TBI (Senathi-Raja et al., 2010; 

Sandhir et al., 2008; Hamm et al., 1992; Eiben et al., 1984).  The susceptibility of the aged brain 

to injury-induced functional deficits and the aged brain’s limited regenerative capacity present a 

significant challenge to researchers in developing an effective treatment.  It was shown in a 

previous study that uninjured aged rats performed significantly worse in the Morris water maze 

than uninjured adult rats, and injured aged rats performed significantly worse than injured adult 

rats (Hamm et al., 1992).  In effect, normal aged animals exhibit decreased cognitive function in 

comparison to normal adult animals, and injury generally has a more devastating impact on the 

aged brain.  This study hypothesized that exogenous administration of bFGF in the aged brain 

following TBI would enhance cognitive recovery, as we previously found that adult rats treated 

with bFGF displayed significantly improved cognitive recovery following injury as assessed by 

the Morris water maze (Sun et al., 2009).  However, in the current study, we did not observe 

significant differences in cognitive deficits in injured animals regardless of treatment compared 

to sham.  We have also observed no measurable improvement in cognitive function in bFGF-

treated as compared to vehicle-treated groups.  This could be a result of our utilization of Fisher 

344 rats for this study as opposed to Sprague-Dawley rats due to the limited availability of aged 

rats.  A recent study done in our lab has found that Fisher 344 rats are particularly susceptible to 

TBI with a higher mortality rate and a higher incidence of acute seizure activities, but 

surprisingly with less cognitive deficits when compared to Sprague-Dawley rats at similar injury 
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levels following FPI (Reid, 2010).  The respective strain differences in response to FPI and the 

fact that the injury severity was lower in the current study due to the high mortality rate might 

explain why injured animals regardless of treatment did not show significant deficits in cognitive 

function.  For this study, an injury level of 1.8±1 atm, which is considered a mild to moderate 

injury, was used because the mortality rate increases severely above injury levels of 1.9 atm for 

Fisher 344 rats.  Albeit, a more severe injury level may be necessary to induce appropriate 

cognitive deficits, the sensitivity of this particular rat strain makes achieving a higher level of 

injury more difficult and costly.  Assessing cognitive measures at an earlier time may be 

beneficial due to the possibility that any cognitive deficits that exist would be more pronounced 

and, therefore, may be more detectable.  For future studies, more sensitive measures of cognitive 

function should be evaluated and utilized to assess cognitive recovery in aged rats.  It should also 

be considered that uninjured rats in this older age group display visibly poorer baseline motor 

and cognitive function than their younger counterparts, which could affect the extent to which 

investigators can induce potentially reversible deficits.  For this study, it is also noted that the 

animal number included in the current data is relatively low for behavior analysis.  Increasing the 

animal number is necessary for a definitive conclusion.  Based on our current data, one might 

suggest that bFGF treatment does not have any effect in improving cognitive function in injured 

aged rats, which is unlike what we have observed in younger animals.  The increased 

neurogenesis that was seen in response to bFGF treatment 1 week following TBI may not have 

had any effect on cognitive recovery considering that no evidence of increased neurogenesis was 

found after 4 weeks.  If these new neurons did not survive and integrate into the existing 

neuronal circuitry in the hippocampus, they would not be able to contribute to improved 

cognitive function.  The prominent inflammatory response observed in the aged brain following 
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TBI may contribute to this deficiency in cognitive recovery as the limited neurogenic effect of 

bFGF treatment could not compensate for such a detrimental inflammatory response. 

The future of bFGF as a treatment for TBI 

 Although the results of this study did not reveal any significant effect of bFGF on 

cognitive recovery in aged rats following TBI, this novel research is of significant clinical 

relevance with respect to the therapeutic implications of bFGF.  This study merely provides a 

preliminary look at the effects of bFGF in the injured aged brain and further study is needed.  

The important role of bFGF in endogenous repair in the CNS is undeniable, as bFGF has both 

neurogenic and neurotrophic effects.   

Basic FGF is a well-known mitogen for both neuronal and non-neuronal cells, displaying 

multifunctional and pleiotropic actions both in vitro and in vivo.  For example, it has been shown 

that bFGF provides crucial extracellular signals which regulate the proliferation and fate 

determination of neural stem and progenitor cells during CNS development (Calof, 1995).  In 

vitro studies have demonstrated that bFGF provides mitogenic signals for neuroblasts and glial 

cells and is involved in directing differentiation of these cells, as well as promoting proliferation 

and survival of cultured neural stem cells (Gritti et al., 1996; Palmer et al., 1999; Qian et al., 

1997).  In addition to its trophic effects on neuronal cells, bFGF stimulates a proliferative 

response in astrocytes and oligodendrocytes as well (Bogler et al., 1990; Fressinaud et al., 1993; 

Hagood et al., 2006).  In vivo studies have shown that intraventricular or subcutaneous 

administration of bFGF increases cell proliferation in the SVZ of normal animals (Kuhn et al., 

1997; Wagner et al., 1999).  Administration of bFGF in normal aged animals restored 

neurogenesis in the hippocampus and the SVZ to levels seen in younger animals (Jin et al., 2003; 
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Rai et al., 2007).  These findings taken together demonstrate that signals provided by bFGF are 

essential for the proliferation, differentiation, and survival of CNS cells.  The role of bFGF in 

neurogenesis has also been well established.  The anatomical distribution of bFGF and its 

receptor FGFR1 in the neurogenic regions of the adult brain, including the SVZ and DG, is 

suggestive of bFGF’s role in endogenous neurogenesis in the mature mammalian CNS (Gonzalez 

et al., 1995; Weickert et al., 2005).  Furthermore, it was shown in bFGF-null mice that bFGF is 

necessary and sufficient to induce cell proliferation and differentiation of NPCs in the 

hippocampus; bFGF knock-out mice were also shown to have a diminished level neurogenesis in 

the DG following seizure or TBI, which was reversed by exogenous treatment with bFGF 

(Yoshimura et al., 2001; Yoshimura et al., 2003).  The beneficial effect of bFGF on neurogenesis 

and cognitive recovery in younger adult rats further demonstrates the therapeutic potential of this 

vital growth factor (Sun et al., 2009).  Besides neural progenitor cell proliferation and 

neurogenesis, other processes have been shown to be influenced by bFGF and represent 

additional mechanisms by which bFGF may aid in cognitive recovery.  When given 

systematically, bFGF may improve synaptic plasticity (Schuman, 1999) and modulate axonal 

branching and arborization (Ramirez et al., 1999).  In vitro, bFGF was shown to promote 

synaptogenesis (Li et al., 2002) and axonal branching and growth in cultured rat hippocampal 

neurons (aoyagi et al., 1994; Patel and McNamara, 1995).   

Evidence of the beneficial effects of bFGF in the mature CNS is rapidly accumulating, 

and the work being done in our lab has continued to contribute immensely to the available 

knowledge in this area, especially with regard to TBI research.  This current study sought to 

evaluate the therapeutic potential of bFGF in the aged brain using a similar paradigm to what 

was previously used by our lab in adult subjects.  We concluded that bFGF has the ability to 
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enhance neurogenesis in the injured aged hippocampus, but this effect was not sufficient to 

improve functional recovery of aged rats following TBI due to the profound injury-induced 

inflammatory response. 
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